
Optimized Execution of Action Chains through Subgoal Refinement∗

Freek Stulp and Michael Beetz
Intelligent Autonomous Systems Group, Technische Univerität München

Boltzmannstrasse 3, D-85747 Munich, Germany
{stulp,beetz }@in.tum.de

Abstract

In this paper we propose a novel computation model for
the execution of abstract action chains. In this computation
model a robot first learns situation-specific performance mod-
els of abstract actions. It then uses these models to auto-
matically specialize the abstract actions for their execution
in a given action chain. This specialization results in re-
fined chains that are optimized for performance. As a side
effect this behavior optimization also appears to produce ac-
tion chains with seamless transitions between actions.

Introduction
Many plan-based autonomous robot controllers generate
chains of abstract actions in order to achieve complex, dy-
namically changing, and possibly interacting goals. To al-
low for plan-based control, the plan generation mechanisms
are equipped with libraries of actions and causal models
of these actions, specifying what it can achieve, and under
which circumstances. By specifying these actions abstractly,
they apply to a broad range of situations, reducing the search
space for planning.

The advantages of this abstraction, however, come at a
cost. Because planning systems consider actions as black
boxes with performance independent of the prior and subse-
quent steps, the system cannot tailor the actions to the con-
texts of their execution. This often yields suboptimal be-
havior with abrupt transitions between actions, causing sub-
optimal performance. The resulting motion patterns are so
characteristic for robots that people trying to imitate robotic
behavior will do so by making abrupt movements between
actions.

Let us illustrate these points using the autonomous robot
soccer scenario depicted in Figure 1. To solve this task, the
planner issues a three step plan, also shown in the figure. If
the robot naively executes the first action (sub-figure 1b), it
might arrive at the ball with the goal at its back, an unfortu-
nate position from which to start dribbling towards the goal.
The problem is that in the abstract view of the planner, be-
ing at the ball is considered sufficient for dribbling the ball
and the dynamical state of the robot arriving at the ball is
considered to be irrelevant for the dribbling action. What
we would like the robot to do instead is to go to the ballin
order to dribble it towards the goal afterwards. The robot
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should, as depicted in the sub-figure 1c, perform the first ac-
tion sub-optimally in order to achieve a much better position
for executing the second plan step.

Goal: Score! Plan:
− go to ball
− dribble ball

in order to
Plan:
− go to ball
− dribble ball
− shoot − shoot

a) b) c)

Figure 1: Alternative executions of the same plan

In this paper we propose a novel computational model for
plan execution that enables the planner to keep its abstract
action models and that optimizes action chains at execution
time, shown in Figure 2. The basic idea of our approach
is to learn performance models of abstract actions off-line
from observed experience. Then at execution time, our sys-
tem determines the set of parameters that are not set by the
plan and therefore define the possible action executions. It
then computes for each abstract action the parameterization
such that the predicted performance of the action chain is
optimal. This is done by refining the intermediate state be-
tween subsequent actions.
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Figure 2: System Overview

Learning performance models
To optimize action chains, we need performance models
of each abstract action that predict the performance, e.g.
time, given specific situations. The execution time of the
goToPose action, which is based on computing a Bezier



curve and trying to follow it as closely as possible, depends
on the distance (dist) and angle (angle2dest) to the destina-
tion, as well as the angle between the current orientation and
the desired orientation at the destination (angle@dest).

The performance function for this action
(goToPose.perform (dist,angle2dest,angle@dest)→t) is
learned by model trees from observed experience acquired
in a simulator, similar to (Belkeret al. 2002). Model trees
are a generalization of decision trees. They are functions
that map continuous or nominal features to a continuous
value. The function is learned from examples, by a piece-
wise partitioning of the feature space. A linear function is
fitted to the data in each partition.

In Figure 3, we depict an example situation in whichdist
andangle2destare 2.0m and 0◦. The plots depict the pre-
dicted execution time for different angles of approach (an-
gle@dest). The model tree’s piecewise linear approximation
is obvious in the Cartesian plot. The polar plot more clearly
shows the dependency of predicted execution time on the
angle of approach for the example situation. Note that the
model has learned to predict performance for all situations
the action can perform, and not just this specific situation.
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Figure 3: Temporal prediction with performance models

Automatic subgoal refinement
The set of possible intermediate states between two ac-
tions is limited by the post-conditions of the first, and pre-
conditions of the second action. The actual intermediate
state simply arises after having executed the first action, as
can be seen in Figure 1b. As it turns out, this state leads to
suboptimal overall performance. From all possible interme-
diate states, our subgoal refinement system chooses the state
that optimizes the predicted performance of the action chain.

In our example, the only variable free for optimizing is the
angle of approach of the intermediate position. Our system
automatically determines this by reasoning about the perfor-
mance model (which variables influence performance), the
pre- or post-conditions of the subsequent action (which vari-
ables are bound), and the current state of the world (which
variables are fixed in the current state).

In Figure 4 the first two polar plots represent the perfor-
mance of the two individual actions for different values of
angle of approach. The overall performance is computed
by adding those two, and is depicted in the third polar plot.
The fastest time in the first polar plot is 2.1s, for angle of
approach of 0.0◦. However, the overall time is 7.5s. These
values can be read directly from the polar plots. This value

is not the optimum overall performance, which is actually
6.1s, as can be read from the third polar plot. Below the po-
lar plots, the situation of Figure 1 is repeated, this time with
the predicted performance for each action.
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Figure 4: Computing the optimal intermediate goal.

Results
To determine the influence of subgoal refinement on the
overall performance of the action chain, we generated 1000
situations with random robot, ball and final goal positions.
The robot executed each navigation task twice, once with
subgoal refinement, and once without. The overall mean
improvement is 12%. We have split these cases into those
in which the subgoal refinement yielded a higher, equal or
lower performance in comparison to not using refinement.
This shows that the performance improved in 505 cases, and
in these cases causes a 23% improvement. In 485 cases,
there was no improvement. This is to be expected, as there
are many situations in which the three positions are already
optimally aligned (e.g. in a straight line), and subgoal refine-
ment will have no effect. A small decrease in performance
(6%) occurred in 10 cases.

Conclusion and Future Work
On-line optimization of action chains allows the use of plan-
ning with abstract actions, without losing performance. Op-
timizing the action chain is done by refining under-specified
intermediate goals, which requires no change in the plan-
ner or plan execution mechanisms. To predict the optimal
overall performance, performance models of each individ-
ual abstract action are learned off-line and from experience,
using model trees. It is interesting to see that requiring op-
timal performance can implicitly yield smooth transitions in
robotic and natural domains, even though smoothness in it-
self is not an explicit goal. Applying subgoal refinement
to the presented scenario yields good results. However, the
computational models underlying the optimization are not
specific to this scenario, or to robot navigation.
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